Hoffmann-Ostenhof's conjecture for traceable cubic graphs
نویسندگان
چکیده
It was conjectured by Hoffmann-Ostenhof that the edge set of every connected cubic graph can be decomposed into a spanning tree, a matching and a family of cycles. In this paper, we show that this conjecture holds for traceable cubic graphs. keywords: Cubic graph, Hoffmann-Ostenhof’s Conjecture, Traceable AMS Subject Classification: 05C45, 05C70
منابع مشابه
M\'acajov\'a and \v{S}koviera Conjecture on Cubic Graphs
A conjecture of M\'a\u{c}ajov\'a and \u{S}koviera asserts that every bridgeless cubic graph has two perfect matchings whose intersection does not contain any odd edge cut. We prove this conjecture for graphs with few vertices and we give a stronger result for traceable graphs.
متن کاملKaiser-Raspaud Conjecture on Cubic Graphs with few vertices
A conjecture of Kaiser and Raspaud [6] asserts (in a special form due to Má cajová and Skoviera) that every bridgeless cubic graph has two perfect matchings whose intersection does not contain any odd edge cut. We prove this conjecture for graphs with few vertices and we give a stronger result for traceable graphs.
متن کاملDecomposing plane cubic graphs
It was conjectured by Hoffmann-Ostenhof that the edge set of every cubic graph can be decomposed into a spanning tree, a matching and a family of cycles. We prove the conjecture for 3-connected cubic plane graphs and 3-connected cubic graphs on the projective plane. Our proof provides a polynomial time algorithm to find the decomposition for 3-connected cubic plane graphs.
متن کاملA note on Fouquet-Vanherpe’s question and Fulkerson conjecture
The excessive index of a bridgeless cubic graph $G$ is the least integer $k$, such that $G$ can be covered by $k$ perfect matchings. An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless cubic graph has excessive index at most five. Clearly, Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5, so Fouquet and Vanherpe as...
متن کاملA Traceability Conjecture for Oriented Graphs
A (di)graph G of order n is k-traceable (for some k, 1 ≤ k ≤ n) if every induced sub(di)graph of G of order k is traceable. It follows from Dirac’s degree condition for hamiltonicity that for k ≥ 2 every k-traceable graph of order at least 2k − 1 is hamiltonian. The same is true for strong oriented graphs when k = 2, 3, 4, but not when k ≥ 5. However, we conjecture that for k ≥ 2 every k-tracea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.04768 شماره
صفحات -
تاریخ انتشار 2016